Técnica de Sobrevivência: Cálculo I

Imagem
Atualmente as redes sociais, por meio de meme, difundem a dificuldade clássica para a maioria dos estudantes que iniciam um curso superior na área de exatas. A dificuldade está em passar na disciplina de Cálculo, mais precisamente não Cálculo I, base de todo curso de exatas. O conceito de Cálculo na matemática é muito diferente aquele atribuído por uma pessoa no seu cotidiano. Trata-se de ferramenta matemática que permite estudar diversos fenômenos e eventos que ocorrem em determinadas situações. Para seu estudo e compreensão é necessário o domínio de conceitos de Álgebra , Geometria Analítica , Funções e Trigonometria . Se o leitor está pensando em realizar um curso na área de exatas, pode ser relevante aos seus estudos, realizar uma Avaliação Diagnóstica, para analisar seus conhecimentos nestas quatro áreas. Em seus livros James Stewart, costuma disponibilizar, logo de inicio, uma avaliação deste tipo. Que tal realizar esta avaliação? Lembre-se que é sem

Questão 28 - Processo Seletivo - Senai - 2.017

Processo Seletivo: Curso Técnico
Ano: 1º semestre de 2.017
Órgão: SENAI
Prova: CGE 2131



No rótulo da caixa de um medicamento de peso líquido 10 g, há a informação de que uma certa substância está presente na proporção de 1 mg/g. Uma pessoa que consumir 2 caixas e meia desse medicamento consumirá quantos gramas dessa substância?


a. $35\%$.

b. $65\%$.

c. $23\%$.

d. $77\%$.

e. $95\%$.



Solução: (d)



Método da Suposição.


neste tipo de questão sobre porcentagem, a quantidade original não interfere.


Supondo a compra de um produto de $R\$ \; 100,00$. Com o desconto de $80\%$ o valor pago é de $20\%$ de $R\$ \; 100,00$:


$20\% \; \mathrm{de} \; R\$ \; 100,00 = \frac{20}{100}\times R\$ \; 100,00=R\$ \; 20,00$


Se na venda em 3x tem um juntos de $15\%$ do preço a vista temos que calcular $15\%$ de $R\$ \; 20,00$:


$15\% \; \mathrm{de} \; R\$ \; 20,00 = \frac{15}{100}\times R\$ \; 20,00=R\$ \; 3,00$


Assim o preço pago em 3x é de $R\$ \; 20,00+R\$ \; 3,00=R\$ \; 23,00$.


Determinando a porcentagem equivalente a $R\$ \; 23,00$ sobre o preço de $R\$ \; 100,00$ aplicando uma regra de três:


$R\$$$\%$
$100$$100$
$23$$x$



$\frac{100}{23}=\frac{100}{x}$


$x=\frac{23\; \cdot \; 100}{100}=23\%$


Se o preço pago é de $23\%$ do preço total ($100\%$), então o desconto foi de $100\% - 23\%=77\%$.


Método da Variável.


Seja $V$ o valor de venda do produto, com o desconto de $80\%$ o valor pago é de $20\% \; \mathrm{de} \; V$.


$20\% \; \mathrm{de} \; V = \frac{20}{100}\times V=\frac{1}{5}\times V=$


Na venda em 3x temos que calcular o acréscimo de $15\%$ de $\frac{20}{100}\times V$.


$15\% \; \mathrm{de} \; \frac{1}{5}\times V=\frac{15}{100}\times \frac{1}{5}\times V=\frac{3}{100}\times V=15\% \; \mathrm{de} \; V$


Se temos um acréscimo de $3\%$ no valor de venda logo o preço passa de $20\% \; \mathrm{de} \; V$ para:


$20\% \; \mathrm{de} \; V+3\% \; \mathrm{de} \; V=23\% \; \mathrm{de} \; V$


Se o preço pago é de $23\%$ do preço total ($100\%$), então o desconto foi de $100\% - 23\%=77\%$.










***

Não se esqueça que a matemática está em todo lugar! Aprecie!







Comentários

Latex Editor (Equações Matemáticas)

Postagens mais visitadas deste blog

Adição ou Subtração de 2 Frações: o Método da Borboleta

Sistema de Equações Ilustradas

Cruzadas Matemáticas

Seguidores