Técnica de Sobrevivência: Cálculo I

Imagem
Atualmente as redes sociais, por meio de meme, difundem a dificuldade clássica para a maioria dos estudantes que iniciam um curso superior na área de exatas. A dificuldade está em passar na disciplina de Cálculo, mais precisamente não Cálculo I, base de todo curso de exatas. O conceito de Cálculo na matemática é muito diferente aquele atribuído por uma pessoa no seu cotidiano. Trata-se de ferramenta matemática que permite estudar diversos fenômenos e eventos que ocorrem em determinadas situações. Para seu estudo e compreensão é necessário o domínio de conceitos de Álgebra , Geometria Analítica , Funções e Trigonometria . Se o leitor está pensando em realizar um curso na área de exatas, pode ser relevante aos seus estudos, realizar uma Avaliação Diagnóstica, para analisar seus conhecimentos nestas quatro áreas. Em seus livros James Stewart, costuma disponibilizar, logo de inicio, uma avaliação deste tipo. Que tal realizar esta avaliação? Lembre-se que é sem

Questão 10 - Concurso Professor de Matemática - E.F. / EJA - Pref. de Francisco Dumont / MG - 2.016

Cargo: Analista Municipal III - Professor dos Anos Finais do Ensino Fundamental e do EJA - Matemática
Ano: 2016
Órgão: Prefeitura de Francisco Dumont / MG
Instituição: COTEC / UNIMONTES
Fonte: PCI Concursos


Na figura abaixo, o quadrado de lado 1 cm está inscrito numa circunferência. Nessas condições, é CORRETO afirmar que o perímetro da região sombreada é, em cm, igual a


A) $\frac{\pi\: \sqrt{2}}{4}+1$.

B) $\frac{\pi}{2}+1$.

C) $\frac{\pi\: \sqrt{2}}{2}+1$.

D) $\frac{\pi}{4}+1$.


Solução: (A)

O perímetro, $P$, que devemos calcular é a soma do lado do quadrado com a quarta parte da circunferência em que o quadrado está inscrito.

Observe que o diâmetro da circunferência tem a mesma medida da diagonal $d$ do quadrado.

A diagonal do quadrado é igual a hipotenusa de um triângulo cujo catetos apresentam a medida do lado do quadrado (vide Figura 1).


Figura 1: Indicações da diagonal e do raio na imagem do enunciado.


$d=\sqrt{1^{2}+1^{2}}=\sqrt{2}$

O raio $r$ é metade do diâmetro, logo:

$r=\frac{\sqrt{2}}{2}$

A circunferencia mede $C=2\cdot \pi \cdot r$, desta forma temos:

$C=2\cdot \pi \cdot \frac{\sqrt{2}}{2}$

$C=\pi \cdot \sqrt{2}$

O perímetro é portanto:

$P=\frac{\pi \cdot \sqrt{2}}{4}+1$


***

Não se esqueça que a matemática está em todo lugar! Aprecie!







Comentários

Anônimo disse…
Muito bom!

Latex Editor (Equações Matemáticas)

Postagens mais visitadas deste blog

Adição ou Subtração de 2 Frações: o Método da Borboleta

Sistema de Equações Ilustradas

Cruzadas Matemáticas

Seguidores