Técnica de Sobrevivência: Cálculo I

Imagem
Atualmente as redes sociais, por meio de meme, difundem a dificuldade clássica para a maioria dos estudantes que iniciam um curso superior na área de exatas. A dificuldade está em passar na disciplina de Cálculo, mais precisamente não Cálculo I, base de todo curso de exatas. O conceito de Cálculo na matemática é muito diferente aquele atribuído por uma pessoa no seu cotidiano. Trata-se de ferramenta matemática que permite estudar diversos fenômenos e eventos que ocorrem em determinadas situações. Para seu estudo e compreensão é necessário o domínio de conceitos de Álgebra , Geometria Analítica , Funções e Trigonometria . Se o leitor está pensando em realizar um curso na área de exatas, pode ser relevante aos seus estudos, realizar uma Avaliação Diagnóstica, para analisar seus conhecimentos nestas quatro áreas. Em seus livros James Stewart, costuma disponibilizar, logo de inicio, uma avaliação deste tipo. Que tal realizar esta avaliação? Lembre-se que é sem

Questão 06 - Concurso Professor de Matemática - E.F. / EJA - Pref. de Francisco Dumont / MG - 2.016

Cargo: Analista Municipal III - Professor dos Anos Finais do Ensino Fundamental e do EJA - Matemática
Ano: 2016
Órgão: Prefeitura de Francisco Dumont / MG
Instituição: COTEC / UNIMONTES
Fonte: PCI Concursos


Considere $f: \left ] 0,\, +\infty \right [\, \rightarrow \mathbb{R}$ uma função definida por $f\left ( x \right )=log\: x$, e $b$ um número real maior do que 1. Com base nessas informações, é CORRETO afirmar que a área do retângulo de vértices $\left ( b,\: f\left ( b \right ) \right )$, $\left ( 2b,\: f\left ( b \right ) \right )$, $\left ( 2b,\: f\left ( 2b \right ) \right )$ e $\left ( b,\: f\left ( 2b \right ) \right )$ vale

A) $b\: log\: x$.

B) $log\: 2$.

C) $b\: log\: 2$.

D) $log\: b$.


Solução: (C)

Segundo a Geometria Analítica temos que a área do quadrilátero é dado na relação:

$\acute{A}rea_{ABCD}=\frac{1}{2}\cdot \begin{vmatrix} x_{A} & y_{A} & 1\\ x_{B} & y_{B} & 1\\ x_{C} & y_{C} & 1 \end{vmatrix}+\frac{1}{2}\cdot \begin{vmatrix} x_{A} & y_{A} & 1\\ x_{C} & y_{C} & 1\\ x_{D} & y_{D} & 1 \end{vmatrix}$

Esta fórmula deriva do fato de que dividimos o quadrilátero ABCD em dois triângulos e somamos suas áreas, lembrando que a área de um triângulo quando é dado as coodenadas dos seus vértices é dado segundo a relação:

$\acute{A}rea_{\Delta ABC}=\frac{1}{2}\cdot \begin{vmatrix} x_{A} & y_{A} & 1\\ x_{B} & y_{B} & 1\\ x_{C} & y_{C} & 1 \end{vmatrix}$

Por se tratar de um retângulo, temos que as duas áreas são iguais, logo:

$\acute{A}rea_{ABCD}=\begin{vmatrix} x_{A} & y_{A} & 1\\ x_{B} & y_{B} & 1\\ x_{C} & y_{C} & 1 \end{vmatrix}$

$\acute{A}rea_{ABCD}=b\cdot f\left ( b \right )+2b\cdot f\left ( b \right )+2b\cdot f\left ( 2b \right )-\left [ 2b\cdot f\left ( b \right )+b\cdot f\left ( 2b \right )+2b\cdot f\left ( b \right ) \right ]$

$\acute{A}rea_{ABCD}=b\cdot f\left ( b \right )+2b\cdot f\left ( b \right )+2b\cdot f\left ( 2b \right )-2b\cdot f\left ( b \right )-b\cdot f\left ( 2b \right )-2b\cdot f\left ( b \right )$

$\acute{A}rea_{ABCD}=b\cdot f\left ( 2b \right )-b\cdot f\left ( b \right )$

$\acute{A}rea_{ABCD}=b\cdot \left [log\left ( 2b \right ) \right ]-b\cdot log\left ( b \right )=b\cdot \left [log\left ( 2 \right )+log\left ( b \right ) \right ]-b\cdot log\left ( b \right )=b\cdot log\left ( 2 \right )+b\cdot log\left ( b \right )-b\cdot log\left ( b \right )$

$\acute{A}rea_{ABCD}=b\cdot log\left ( 2 \right )$

Para melhor compreensão disponibilizo um applet do GeoGebra:





***

Não se esqueça que a matemática está em todo lugar! Aprecie!







Comentários

Latex Editor (Equações Matemáticas)

Postagens mais visitadas deste blog

Adição ou Subtração de 2 Frações: o Método da Borboleta

Sistema de Equações Ilustradas

Cruzadas Matemáticas

Seguidores