Técnica de Sobrevivência: Cálculo I

Imagem
Atualmente as redes sociais, por meio de meme, difundem a dificuldade clássica para a maioria dos estudantes que iniciam um curso superior na área de exatas.


A dificuldade está em passar na disciplina de Cálculo, mais precisamente não Cálculo I, base de todo curso de exatas.


O conceito de Cálculo na matemática é muito diferente aquele atribuído por uma pessoa no seu cotidiano. Trata-se de ferramenta matemática que permite estudar diversos fenômenos e eventos que ocorrem em determinadas situações.


Para seu estudo e compreensão é necessário o domínio de conceitos de Álgebra, Geometria Analítica, Funções e Trigonometria.



Se o leitor está pensando em realizar um curso na área de exatas, pode ser relevante aos seus estudos, realizar uma Avaliação Diagnóstica, para analisar seus conhecimentos nestas quatro áreas.


Em seus livros James Stewart, costuma disponibilizar, logo de inicio, uma avaliação deste tipo. Que tal realizar esta avaliação? Lembre-se que é sempre bom estar preparado.�…

Questão 09 – Vestibulinho Etec – Centro Paula Souza – 1° Semestre de 2.008


PARA RESPONDER ÀS QUESTÕES 8 E 9, CONSIDERE O TEXTO E A FIGURA A SEGUIR.



A pipa, também conhecida como papagaio ou quadrado, foi introduzida no Brasil pelos colonizadores portugueses no século XVI.

Para montar a pipa, representada na fi gura, foram utilizados uma vareta de 40 cm de comprimento, duas varetas de 32 cm de comprimento, tesoura, papel de seda, cola e linha.

As varetas são fixadas conforme a fi gura, formando a estrutura da pipa. A linha é passada em todas as pontas da estrutura, e o papel é colado de modo que a extremidade menor da estrutura da pipa fi que de fora.




Questão 09


Na figura, a superfície sombreada corresponde ao papel de seda que forma o corpo da pipa. A área dessa superfície sombreada, em centímetros quadrados, é


(A) 576.

(B) 704.

(C) 832.

(D) 1 150.

(E) 1 472.



Solução: (C)



Segundo a Figura 1, podemos dividir a área em duas formas geométricas: um triângulo $CDE$ e um retângulo $BCEF$, sendo as áreas calculadas segundo as expressões:


Figura 1: Localização do triângulo e do retângulo que possibilitam determinar a área do papel.


$A_{tri\hat{a}ngulo}=\frac{\left ( base \right )\times \left ( altura \right )}{2}$


$A_{ret\hat{a}ngulo}=\left ( base \right )\times \left ( altura \right )$


Calculando temos:


$A_{tri\hat{a}ngulo}=\frac{\overline{CE}\times \overline{DH}}{2}=\frac{32 \times 20}{2}=\frac{640}{2}=320\; cm^{2}$


$A_{ret\hat{a}ngulo}=\overline{EF}\times \overline{BF}=16 \times 32=512\; cm^{2}$


A área total, $A_{total}$ é obtida segunda a expressão:


$A_{total}=A_{tri\hat{a}ngulo}+A_{ret\hat{a}ngulo}=320\; cm^{2} + 512\; cm^{2}=832\; cm^{2}$


Então a área total do papel é de 832 cm2.


Outra forma é dividir a área do papel em dois trapézios congruentes (iguais): o trapézio $EBCD$ e o trapézio $EFGD$, conforme a Figura 2.


Figura 2: Localização dos trapézios que possibilitam determinar a área do papel.


$A_{trap\acute{e}zio}=\frac{\left ( lado_{maior}+lado_{menor} \right )}{2}\times \left ( altura \right )$


Logo:


$A_{trap\acute{e}zio}=\frac{\left ( \overline{DE}+\overline{BC} \right )}{2}\times \overline{EB}=\frac{\left ( 36+16 \right )}{2}\times 16=\frac{832}{2}=416\; cm^{2}$


$A_{total}=2 \times A_{trap\acute{e}zio}=2 \times 416\; cm^{2}=832\; cm^{2}$


Então a área total do papel é de 832 cm2.



***

Não se esqueça que a matemática está em todo lugar! Aprecie!







Postar um comentário

Latex Editor (Equações Matemáticas)

Postagens mais visitadas deste blog

Teste de Inteligência?

Calcular Logaritmo de Cabeça

Seguidores

Google+ Followers